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Abstract In this paper, a linearly conforming radial point
interpolation method (LC-RPIM) is presented for the linear
analysis of shells. The first order shear deformation shell
theory is adopted, and the radial and polynomial basis func-
tions are employed to construct the shape functions. A strain
smoothing stabilization technique for nodal integration is
used to restore the conformability and to improve the accu-
racy. Convergence studies are performed in terms of the num-
ber of nodes and the nodal distribution patterns, including
the regular distribution and the irregular distribution. Com-
parisons are made with the existing results available in the
literature and good agreements are obtained. The numeri-
cal examples have demonstrated that the present approach
provides very stable and accurate results and effectively eli-
minates the membrane locking and shear locking in shell
problems.
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1 Introduction

The applications of shell structures are found in a variety of
engineering fields, such as the aircraft and aerospace
industry, marine industry and automobile industry. Hence,
the shell analysis plays an important role in practical enginee-
ring circumstances. The commonly used methods for shell
structures, to name a few, include the Ritz method, Finite ele-
ment methods, and recently developed mesh-free methods.
Numerous publications for the shell analysis using finite ele-
ment methods have been reported since the forms of cur-
ved shell were proposed in the time of mid-1960 s. A lot of
shell elements have been developed and their performances
have been examined by researchers. Hughes and Liu [1,2]
presented a nonlinear shell formulation based on the dege-
nerated shell element, and Belytschko et al. [3] studied the
performances of different quadrature schemes in dealing with
membrane and shear locking in shells, and proposed a stress
projection method to eliminate the membrane and shear
locking in shell elements. Liu et al. [4] developed an effi-
cient and reliable resultant-stress degenerated-shell element,
which can avoid the problems of shear and membrane locking
and spurious mode. Other notable works encompass those
given by Simo et al. [5], Crisfield [6] and Reddy and Liu [7].

Meshfree methods, which are independent of the
geometric elements, are considered as alternative methods
for problems that are difficult to solve using conventional
mesh-based approaches, and have been widely applied in
various engineering analysis. Krysl and Belytschko [8] pre-
sented an element-free Galerkin shell formulation for
arbitrary Kirchhoff shells. Noguchi et al. [9] proposed an
enhanced element-free Galerkin method to analyze three-
dimensional shell and spatial structures. Li et al. [10] car-
ried out the numerical simulations of large deformation of
thin shell structures using the meshfree reproducing kernel
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particle method. Liu et al. [11] developed a new class of
methods, the reproducing kernel element method (RKEM),
which utilizes the advantages of both finite element methods
and meshfree methods. The interpolation hierarchical
structure was constructed with both minimal degrees of
freedom and higher order smoothness continuity over multi-
dimensional domain [12,13].

In meshfree methods, numerical integration is commonly
carried out on the background elements using the Gaus-
sian quadrature. In order to reduce the computation cost and
avoid the complexity involved in the Gauss integration in
meshfree methods, the nodal integration has been propo-
sed by researchers as an alternative of the Gaussian qua-
drature. Beissel and Belytschko [14] presented a stabilized
nodal integration approach in element-free Galerkin method.
Their study demonstrated that the stabilized EFG eliminated
spurious near-singular modes in some problems. For pro-
blems without unstable modes, however, the accuracy of
solutions deteriorated. Bonet and Kulasegaram [15] provi-
ded a correction procedure to improve the accuracy of nodal
integration by avoiding the computation of a second-order
derivative of shape functions. Chen et al. [16] proposed a sta-
bilized nodal integration procedure for the Galerkin meshfree
method to achieve higher efficiency with desired accuracy
and convergent properties. An integration constraint (IC) is
introduced as a necessary condition for a linear exactness in
the meshfree Galerkin approximation. They have demonstra-
ted that the Gauss integration methods violate IC and produce
prominent errors. Using the stabilized conforming nodal inte-
gration, Wang and Chen [17] presented a meshfree Mindlin–
Reissner plate formulation to mitigate the shear locking in
Mindlin–Reissner plates.

The Point Interpolation Method (PIM), a meshfree method
based on Galerkin formulation, was originally proposed by
Liu and Gu [18] and used for solid mechanics problems.
Later, Wang and Liu [19] presented an alternative version
of PIM, the radial point interpolation method (RPIM), where
both polynomial and radial basis functions (RBFs) are
employed to construct the shape functions in terms of a set of
arbitrarily distributed nodes. The RPIM shape functions pos-
sess the Kronecker delta function properties, the boundary
conditions, therefore, can be imposed directly. Moreover,
due to the adoption of the radial basis function, the moment
matrix is always convertible for arbitrarily scattered nodes.
The RPIM has been successfully applied in various enginee-
ring problems, such as simulation of piezoelectric structures
[20], three-dimensional elasticity problems [21], and solid
mechanics problems [22].

In this paper, a linearly conforming radial point interpola-
tion method (LC-RPIM) is presented for the linear analysis
of shell structures. A stabilized nodal integration technique is
used to achieve conformity, higher accuracy and efficiency.
The first order shear deformation shell theory is employed in

this formulation. The numerical examples demonstrate that
the present method shows the good accuracy, efficiency and
stability, and is effective in eliminating the membrane and
shear locking in shell problems.

2 Radial point interpolation method (RPIM)

In this section, the construction of shape functions based on
RPIM is briefly introduced. Consider a domain with a set of
arbitrarily scattered points at xi , (i = 1, 2, . . . , n), where n
is the number of nodes in the support domain. The approxi-
mation of a continuous function u(x) can be expressed in the
form of

u(x) =
n∑

i=1

ri (x)ai +
m∑

j=1

p j (x)b j = rT(x)a + PT(x)b (1)

where ai is the unknown coefficient for the radial basis func-
tion ri (x), which is defined as

ri (x, y) =
[
(x − xi )

2 + (y − yi )
2 + R2

c

]q
(2)

where q and Rc are shape parameters, which are arbitrary real
numbers and had been examined in detail by Wang and Liu
[19]. In Eq. (1), b j is the coefficient for the polynomial basis
p j (x), and m is determined according to the polynomial basis
selected. For example, a quadratic basis in two-dimension
requires m = 6, and the polynomial base are given by

PT(x) =
[
1, x, y, x2, xy, y2

]
(3)

The coefficients ai and b j are determined by satisfying the
reproducing condition at the nodes in the support domain.
The interpolation at the kth node is expressed as

uk = u(xk) =
n∑

i=1

airi (xk)

+
m∑

j=1

b j p j (xk), k = 1, 2, . . . , n (4)

In order to solve coefficients ai and b j uniquely, the following
constraints are imposed

n∑

i=1

p j (xk)ai = 0, j = 1, 2, . . . ,m (5)

It can be expressed in matrix form as
[

R0 P0

PT
0 0

]{
a
b

}
=
{

ue

0

}
or G

{
a
b

}
=
{

ue

0

}
(6)

where nodal displacement vector ue is given by

ue = [u1, u2, u3, . . . , un]T (7)
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The moment matrix R0 is expressed as

R0 =

⎡

⎢⎢⎢⎣

r1(x1, y1) r2(x1, y1) · · · rn(x1, y1)

r1(x2, y2) r2(x2, y2) · · · rn(x2, y2)
...

...
...

...

r1(xn, yn) r2(xn, yn) · · · rn(xn, yn)

⎤

⎥⎥⎥⎦ (8)

and the matrix P0 is defined as

P0 =

⎡

⎢⎢⎢⎣

p1(x1, y1) p2(x1, y1) · · · pm(x1, y1)

p1(x2, y2) p2(x2, y2) · · · pm(x2, y2)
...

...
...

...

p1(xn, yn) p2(xn, yn) · · · pm(xn, yn)

⎤

⎥⎥⎥⎦ (9)

Solving Eq. (6) yields
{

a
b

}
= G−1

{
ue

0

}
(10)

The approximation of the function u(x) is finally expressed
as

u(x) = [RT
0 (x) PT

0 (x)
]

G−1
{

ue

0

}
= ϕ(x)ue (11)

where ϕ(x) is the matrix of the shape functions and given by

ϕ(x) = [φ1(x) φ2(x) · · · φn(x)]

φk(x) =
n∑

i=1

ri (x)Ḡi,k +
m∑

j=1

p j (x)Ḡn+ j,k (12)

where Ḡi,k is the element of the matrix G−1. Thus, an
approximation function uh(x) can be expressed as

uh(x) =
N P∑

I=1

φI (x)ue
I (13)

The derivatives of shape functions can be obtained by diffe-
rentiating Eq. (12)

∂φk

∂x
=

n∑

i=1

∂ri

∂x
Ḡi,k +

m∑

j=1

∂p j

∂x
Ḡn+ j,k

∂φk

∂y
=

n∑

i=1

∂ri

∂y
Ḡi,k +

m∑

j=1

∂p j

∂y
Ḡn+ j,k (14)

The present shape functions possess the reproducing proper-
ties due to the addition of polynomial basis, satisfy the Delta
function properties and partition of unity, and always exist
because of the adoption of RBFs.

3 Strain smoothing technique

3.1 Integration constraints

Chen et al. [16] have demonstrated that, for linear exactness in
Galerkin approximation, integration constraints (IC) need to

be satisfied in domain integration. The integration constraints
are given by

NIT∑

L=1

∇φI (x̂L)wL = 0 for all interior nodes

{I : supp(φI ) ∩ � = ∅} (15)
NIT∑

L=1

∇φI (x̂L)wL =
NITh∑

L=1

nφI (x̂L)sL for boundary nodes

{I : supp (φI ) ∩ �h �= ∅} (16)

where � is the entire boundary; �h is the natural boundary;
n is the surface normal on �h; x̂L and wL are the spatial
co-ordinate and the weight of the domain integration point,
respectively; x̂L and sL in Eq. (16) are spatial co-ordinate
and weight of natural boundary integration point; NIT is the
number of domain integration points, and NITh is the number
of integration points on the natural boundary.

3.2 Strain smoothing technique

The strain smoothing approach that meets integration cons-
traint was proposed by Chen [16] to remove the instability in
the nodal integration. For a representative domain of a node
xL , the strain smoothing at the node is given by

ε̃i j (xL) =
∫

�

εi j (x)�(x; x − xL)d� (17)

where εi j is the strain obtained from displacement, and �
is a smoothing function. A constant smoothing function is
written as

�(x; x − xL) =
{

1
/

AL x ∈ �L

0 x /∈ �L
(18)

in which AL = ∫
�L

d� is the area of the representative
domain of node L , which can be obtained either from the
Voronoi diagram or Delaunay triangulation shown in Fig. 1.
Employing the divergence theorem to Eq. (17) yields the
following strain smoothing expression

ε̃i j (xL) = 1

2AL

∫

�L

nuh
i d� (19)

where �L is the boundary of the representative domain of
node L , and n is the surface normal on �L , as shown in
Fig. 2. For a two-dimensional problem, introducing RPIM
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(b) Nodal domain by Delaunay triangulation 

 Voronoi diagram(a)

Fig. 1 Problem domain represented by irregular nodes: a Voronoi dia-
gram; b nodal domain by Delaunay triangulation

shape functions into Eq. (19) yields

ε̃h(xL) =
∑

I∈SL

B̃I (xL)uI (20)

B̃I (xL) =
⎡

⎣
∇̃1φI (xL) 0

0 ∇̃2φI (xL)

∇̃2φI (xL) ∇̃1φ I (xL)

⎤

⎦ (21)

∇̃iφI (xL) = 1

AL

∫

�L

φI (xL)ni (xL)d� (i = 1, 2) (22)

n

LΓL ΩL

Fig. 2 A nodal representative domain

where SL is a group of nodes in the corresponding support
for node L . It has been demonstrated that the smoothing gra-
dient Eq. (22) satisfies the integration constraints in Eqs. (15)
and (16) when the reproducing kernel shape functions are
introduced [16]. Due to the reproducing properties of the
RPIM shape functions, it is obviously seen that the integra-
tion constraints in Eqs. (15) and (16) still hold when the RPIM
shape functions are employed.

4 Formulation

4.1 Energy formulation

Figure 3a shows a doubly-curved shell panel, an orthogonal
curvilinear coordinate system (x, y, z) is fixed on the middle
surface of the panel. The parameters R1 and R2 denote the
principal radii of curvature of the middle surface, h represents
the thickness. The cylindrical shell panel shown in Fig. 3b is
a special case of a doubly curved shell panel when R1 = ∞
and R2 = R. For a shell panel with R1 = R2 = R, it
becomes a spherical shell. In present study, both the circular
cylindrical shells and the spherical shells are considered.

According to the first order shear deformation shell theory
[23], the displacement field is expressed as

u(x, y, z) = u0(x, y)+ zψx (x, y)

v(x, y, z) = v0(x, y)+ zψy(x, y)

w(x, y, z) = w0(x, y)

(23)

where u0, v0 and w0 denote the displacements of the middle
surface of the shell in the x, y, and z directions, ψx and ψy

are the rotations of the transverse normal about the y and x
axes, respectively.
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The linear strains are defined as
⎧
⎨

⎩

εxx

εyy

γxy

⎫
⎬

⎭ = ε0 + zκ,

{
γyz

γxz

}
= γ 0 (24)

where

ε0 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u0

∂x
+ w0

R1
∂v0

∂y
+ w0

R2
∂u0

∂y
+ ∂v0

∂x

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, κ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ψx

∂x
∂ψy

∂y
∂ψx

∂y
+ ∂ψy

∂x

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

γ 0 =

⎧
⎪⎨

⎪⎩

ψy + ∂w0

∂y

ψx + ∂w0

∂x

⎫
⎪⎬

⎪⎭
(25)

The total strain energy of the panel is expressed by

Uε = 1

2

∫

�

εTSεd� (26)

where ε and S are given by

ε = {ε0 κ γ 0
}T

(27)

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 S44 S45

0 0 0 0 0 0 S45 S55

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡

⎢⎣
A

	

B 0
	

B D 0
0 0 S̄

⎤

⎥⎦ =
[

D̄ 0
0 S̄

]
(28)

In which the extensional Ai j , coupling Bi j , bending Di j and
transverse shear Si j stiffnesses, are given by

(Ai j , Bi j , Di j )=
h/2∫

−h/2

Qi j (1, z, z2)dz, Si j =
h/2∫

−h/2

K Qi j dz

(29)

The stiffness Ai j , Bi j , and Di j are defined for i, j = 1, 2, 6,
whereas Si j is defined for i, j = 4, 5. K denotes the trans-
verse shear correction coefficient and is taken as
K = 5

/
6. Qi j is the engineering constant and is defined

as

Q11 = E11

1 − ν12ν21
, Q12 = ν12 E22

1−ν12ν21
, Q22 = E22

1 − ν12ν21

Q66 = G12, Q44 = G23, Q55 = G13, (30)

x
y

z

1R
2R

h

x
y

z

L

R

0θ

h

(a)

(b)

Fig. 3 a Geometry of a doubly-curved shell panel. b Geometry of a
cylindrical shell panel

where E11 and E22 are the elastic moduli in the principle
material coordinates, G12,G13, and G23 are the shear moduli,
and ν12 and ν21 are the Poisson’s ratios. For a shell composed
of different layers of materials, the stiffnesses in Eq. (29) can
be computed according to the method introduced by Reddy
and Miravete [24]

The external work done due to the surface traction and
body force is expressed as

We =
∫

�

uT f̄d�+
∫

�

uT t̄d� (31)

where f̄ and t̄ represent the external load and the prescribed
traction on the natural boundary, respectively.
Thus, the total potential energy functional of the panel is
written as

�s = Uε − We (32)

4.2 Nodal integration

In order to perform the nodal integration, a set of discrete
nodes is freely generated on the x − y space in the parametric
coordinate system. The corresponding nodal representative
domains are formed according to the Delaunay triangulation.
For a shell panel domain � discretized by a set of nodes
xI , I = 1, . . . , NP , the approximations of the displacements
and rotations of the mid-surface of the panel are expressed
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as

uh
0

=

⎛

⎜⎜⎜⎜⎝

uh
0
vh

0
wh

0
θh

x
θh

y

⎞

⎟⎟⎟⎟⎠
=

NP∑

I=1

φI

⎛

⎜⎜⎜⎜⎝

uI

vI

wI

θx I

θy I

⎞

⎟⎟⎟⎟⎠
=

NP∑

I=1

φI (x)dI (33)

Substituting Eq. (33) into Eq. (32) and taking variation to the
energy functional yields the equation

Kd = f (34)

where

K = Kb + Km + Ks (35)

d = [d1 d2 · · · dn]T (36)

Kb
I J =

∫

�

Bb
I

T
DBb

J d� (37)

Km
I J =

∫

�

Bm
I

TABm
J d�+

∫

�

Bm
I

T	BB
b

J d�

+
∫

�

Bb
I

T	
BB

m

J d� (38)

Ks
I J =

∫

�

Bs
I

TS̄B
s
J d� (39)

fI =
∫

�

φI f̄d�+
∫

�

φI t̄d� (40)

The stiffness matrix in Eq. (37) is evaluated by using the
stabilized nodal integration technique introduced in Sect. 3,
whereas Eqs. (38)–(40) are computed by using the direct
nodal integration. The approximations of Eqs. (37)–(40) are
given as

Kb
I J =

NP∑

L=1

B̃bT

I (xL)DB̃
b
J (xL)AL (41)

Km
I J =

NP∑

L=1

[
Bm

I
T
(xL)ABm

J (xL)+ Bm
I

T
(xL)

	

BB
b

J (xL)

+ Bb
I

T
(xL)

	

BB
m

J (xL)

]
AL (42)

Ks
I J =

NP∑

L=1

Bs
I

T
(xL)S̄B

s
J (xL)AL (43)

fI =
NP∑

L=1

φI (xL)f(xL)AL +
NPb∑

L=1

φI (xL)t̄(xL)sL (44)

where xL and AL denote the nodal point coordinate and the
nodal representative area, respectively, NPb is the number
of nodes on the natural boundary, and sL are the weights
associated with the boundary point obtained from Delaunay

triangulation. B̃b
I (xL),Bb

I (xL),Bm
I (xL) and Bs

I (xL) are given
by

B̃b
I (xL) =

⎡

⎣
0 0 0 b̃I x (xL) 0
0 0 0 0 b̃I y(xL)

0 0 0 b̃I y(xL) b̃I x (xL)

⎤

⎦ (45)

b̃I x (xL) = 1

AL

∫

�L

φI (x)nx (x)d� (46)

b̃I y(xL) = 1

AL

∫

�L

φI (x)ny(x)d� (47)

Bb
I (xL) =

⎡

⎢⎣
0 0 0 ∂φI (xL )

∂x 0
0 0 0 0 ∂φI (xL )

∂y

0 0 0 ∂φI (xL )
∂y

∂φI (xL )
∂x

⎤

⎥⎦ (48)

Bm
I (xL) =

⎡

⎢⎣

∂φI (xL )
∂x 0 φI (xL )

R1
0 0

∂φI (xL )
∂y

φI (xL )
R2

0 0
∂φI (xL )
∂y

∂φI (xL )
∂x 0 0 0

⎤

⎥⎦ (49)

Bs
I (xL) =

[
0 0 ∂φI (xL )

∂x φI (xL) 0
0 0 ∂φI (xL )

∂y 0 φI (xL)

]
(50)

5 Numerical examples

In this section, several benchmark problems are presented to
evaluate the performance of the present method. The shape
functions are constructed using the radial point interpolation
method, the shape parameters q and Rc are taken as 1.03 and
1.42, respectively [19]. A scaling factor of 3.4 for a support
domain is selected. The nodal integration domain is gene-
rated by Delaunay triangulation. The trapezoidal rule with
two-point on each segment for the integration is adopted.
The smoothing stabilization technique is used in evaluating
the bending stiffness, while the membrane and shear stiff-
ness terms are estimated by using the direct nodal integra-
tion method for the elimination of the membrane locking and
shear locking.

5.1 Scordelis-Lo roof

The Scordelis-Lo roof, or Barrel vault roof, is a famous
benchmark problem for the shell analysis to test the mem-
brane response. Figure 4 shows the barrel vault loaded by
gravity forces. The boundary at the curved edges is rigid dia-
phragm and the two straight edges are free. The geometric
properties of the shell are: the length L = 600 in, the radius
R = 300 in, the thickness h = 3 in, and the span angle
θ0 = 0.6981 rad or θ0 = 80◦. The material properties are:
E = 3 × 106 psi and ν = 0.0. The dead weight loading is
q0 = 0.625 psi. A quarter of the roof is modeled because of
the symmetry. In this case, a value of 3.6288in is taken as the
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Fig. 4 A cylindrical shell roof
under its own weight
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reference solution for the vertical deflection at the center of
the free edge [5,23]. All solutions given in this case are nor-
malized with the reference value. Two cases are studied for
this problem: regularly distributed nodes and irregularly dis-
tributed nodes. Figure 5 shows the comparisons of the present
results obtained from using a regular nodal distribution with
solutions produced from FEM using 4-node and 9-node ele-
ments with reduced integration and other elements [4,25]. It
is seen that the RPIM shows a very good convergence per-
formance. The vertical displacement of the center line of the
roof is plotted in Fig. 6. It is observed that the result derived
from the proposed method agrees with the solution by FEM
[23] very well. Table 1 shows the comparison between the
present solution with those obtained from NUHEX-4 element
and NUHEXIN-4 element [26], and HEXDS element [27]. It
is seen that, for the regular nodal distribution, the NUHEX-4
element shows the best convergence performance, the RPIM,
however, can achieve the same accuracy of the solution with
32×32 nodes. Compared with the NUHEXIN-4 and HEXDS
element, the RPIM demonstrates a better convergence per-
formance and produces more accurate result. To examine the
effects of the nodal distribution pattern on the solution,
the irregular nodal distribution is generated by manipulating
the regular nodes according to the following approach:

xir = x +x · rc · αir

yir = y +y · rc · αir (51)

where x and y are the coordinates of regular nodes, x and
y are initial nodal spacings, rc is a random number between
−1 and 1, αir represents the irregularity factor ranging from
0.1 to 0.4, a higher value of αir means that the nodes are
more highly irregular. The result in Table 1 is obtained using
an irregular factor of 0.4. It is seen that the influence of the
irregularity seems more pronounced than that of the number
of nodes.
Although the result produced from the irregularly distributed
nodes is less accurate, the difference is limited in a range of
3–19%.

5.2 Pinched cylinder

This is a known benchmark for cylindrical shells, and is iden-
tified as one of the most severe tests for inextensional bending
and complex membrane states. The pinched shell is suppor-
ted at each end by rigid diaphragm and subjected to a pair
of pinching loads P = 1, as shown in Fig. 7. The geome-
tric properties of the cylinder are: length L = 600 in, radius
R = 300 in, and thickness h = 3 in. The material constants
are: Young’s modulus E = 3×106 and Poisson ratio ν = 0.3.
Due to the symmetry, an octant of the cylinder is mode-
led in this case. The displacement obtained from the RPIM
is normalized with the analytical solution 1.8248 × 10−5

in [5].
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Fig. 5 Comparison of normalized displacements in the Scordelis-Lo
roof
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Fig. 6 Vertical deflection of the central line in the Barrel vault

Table 1 Normalized displacement of the Scordelis-Lo roof

Element Mesh (nodes)
8 × 8 × 1 16 × 16 32 × 32 10 × 10

×1 ×1 ×2
(8 × 8) (16 × 16) (32 × 32)

RPIM Regular 0.906 0.957 1.017 —
Irregular 1.039 1.190 1.121

Liu et al. [26] NUHEX-4 1.016 1.011 1.010 1.045
Liu et al. [27] NUHEXIN-4 1.162 1.144 1.140

HEXDS 1.157 1.137 1.132

The RPIM solution obtained from a regular nodal distri-
bution, together with FEM results obtained using 4-node,
9-node and Heterosis elements with selective reduced inte-
gration, RSDS element [4], and element given by Koziey
and Mirza [25], is plotted in Fig. 8. It is seen that the RPIM
shows a better convergence performance compared to the
FEM when the number of degree of freedom (DOF) exceeds
1300. For DOF less than 1300, the finite elements, excluding
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Fig. 7 Geometry of the pinched circular cylinder
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Fig. 8 Comparison of the normalized displacement under point load
in the pinched cylindrical shell

the element by Koziey and Mirza [25], demonstrate their
superiority in convergent trend over RPIM. Table 2 shows
another comparison between the present solution with those
attained from NUHEX-4 element and NUHEXIN-4 element
[26], and HEXDS element [27]. For the regular nodal dis-
tribution, the result derived from the RPIM is as accurate
as those from NUHEXIN-4 element [26] and HEXDS ele-
ment [27] when the number of nodes exceeds 16 × 16. For
this case, the RPIM demonstrates a better performance than
NUHEX-4 element. For the irregular nodal distribution, the
discrepancy is restrained in a range of 6–18.4% when the
number of nodes is more than 16 × 16.

5.3 Clamped shallow shell

In this case, the bending deformation is significant in rela-
tion to membrane deformation. The shell is clamped at four
edges and subjected to a uniform radial pressure distribution
q0 = 0.04 psi, as shown in Fig. 9. The geometric parameters
are: the length L = 20 in, the radius R = 100 in, the thi-
ckness h = 0.125 in, and the span angle θ0 = 0.1 rad. The
material parameters are: Young’s modulus E = 4.5 × 105
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Table 2 Normalized displacement of the pinched cylinder with dia-
phragms

Element Mesh (nodes)
10 × 10× 16 × 16× 20 × 20×
2(10 × 10) 4(16 × 16) 4(20 × 20)

RPIM Regular 0.715 0.943 1.004
Irregular 0.799 1.062 1.184

Liu et al. [26] NUHEX-4 0.633 0.870 0.936
Liu et al. [27] NUHEXIN-4 0.811 0.934 0.980

HEXDS 0.801 0.945 0.978

x
y

z

0θ

h
0q

L

R

Fig. 9 Clamped cylindrical shell geometry definition

Table 3 Transverse center displacement for clamped cylindrical shell
under radial pressure

Present w(in) Brebbia and Palazotto and Reddy [30]
nodes Connor [28] Dennis [29]

11 × 11 0.01245 0.011 0.01144 0.011349

13 × 13 0.01197

15 × 15 0.01193

17 × 17 0.01196

psi and Poisson ratio ν = 0.3. Only one quarter of the panel
is modeled due to the symmetry. This problem has been sol-
ved by Brebbia and Connor [28] using Donnell shallow shell
strain displacement relations without considering the trans-
verse stresses. Palazotto and Dennis [29] also reported a solu-
tion for this problem with transverse stresses included. Due
to its high value of length to thickness ratio, the shell is consi-
dered to be a thin shell. Hence, the transverse shear deforma-
tion is likely to be minimal. The present solution is obtained
using a 17 × 17 regularly distributed nodes. Table 3 shows
the present transverse center displacement solution and those
given by Brebbia and Connor [25], Palazotto and Dennis [29],
and Reddy [30]. A very good agreement is observed.

5.4 Cross-ply cylinder

A simply-supported cross-ply cylinder under internal sinu-
soidal pressure is considered in this case. The dimension-
less material and geometrical properties are: E1/E2 = 25,
G13 = G12 = 0.5E2, G23 = 0.2E2, ν12 = 0.25, L/R = 4,

Table 4 Central deflection parameters for laminated cylindrical panels
under sinusoidal loading

Present s w̄ Varanda and Reddy and
laminate Bhaskar [31] Arciniega [23]

0◦/90◦ 50 2.2536 2.2420 2.2865

100 1.3684 1.3670 1.3781

90◦/0◦/90◦ 50 0.5468 0.5495 0.5457

100 0.4726 0.4715 0.4717

Table 5 Maximum deflection of a simply-supported spherical shell
panel under central point load

Present laminate w × 10 (in) Vlasov [32] Reddy [30]

Isotropic 0.3947 0.3956 0.3935

Orthotropic 1.2676 1.2644

0◦/90◦ 1.2381 1.2376

R/h = s and θ0 = π/8. The sinusoidal load is expressed as

Ps = q0 sin
(πx

L

)
sin

(
πθ

θ0

)
(52)

where q0 is a constant. A quarter of the panel is modeled
because of the symmetry. Two ratios s = 50, 100 and two
lamination schemes, (0◦/90◦) and (90◦/0◦/90◦), are consi-
dered. A regular nodal distribution of 19 × 19 is used to
achieve the convergent solution. Table 4 shows comparisons
of the result from RPIM with the 3D analytical solutions by
Varadan [31] and numerical solutions by Reddy [23]. The
dimensionless central deflection w̄ = 10E1

q0 Rs3w is introduced
in this case. It is seen that RPIM solution agrees well with
those in literature.

5.5 Spherical shell panel under point load

A spherical shell panel (R1 = R2 = R) under point load
at the center, as shown in Fig. 10, is studied. The panel is
simply supported at all edges. The geometric parameters are:
R1 = R2 = R = 96 in, a = b = 32 in, h = 0.1 in. Three
cases, including an isotropic shell, an orthotropic shell and a
shell with a lamination scheme (0◦/90◦), are considered. For
the orthotropic shell and the laminate panel with (0◦/90◦),
the material properties of which have been given in Sect. 5.4.
The point load is P0 = 100 lbs. a total of 21 × 21 nodes are
used. Table 5 shows the comparison of present solution with
those given by Reddy [30] and Vlasov [32]. Good agreements
are observed.

5.6 Spherical shell panel under uniform load

Spherical shell panels with lamination schemes (0◦/90◦) and
(0◦/90◦/0◦) under a uniform load, is studied in this section.
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Table 6 Center deflection parameters ŵ of spherical shell panels under
uniform load a/h = 100

Present R/a ŵ Varanda and Reddy [30]
laminate Bhaskar [31]

0◦/90◦ 5 2.2536 2.2420 2.2865

10 1.3684 1.3670 1.3781

0◦/90◦/0◦ 5 0.5468 0.5495 0.5457

10 0.4726 0.4715 0.4717

x
y

z

1R

2R

h

P0

b

a

Fig. 10 Simply supported spherical shell panel under central point load

The spherical shell panels have the same material properties
as the panel in Sect. 5.5. The number of nodes used in this case
is 19 × 19. Table 6 shows the center deflection parameters

ŵ = E2h3

q0a4 ×103 for panels with a thickness ratio a/h = 100
and radius-to-length ratios R/a = 5, 10. It is seen that the
present solutions agree well with solutions by Reddy [30].

6 Conclusions

A formulation for the shell analysis has been presented using
a linearly conforming radial point interpolation method. Both
the radial and polynomial basis functions are employed to
construct the RPIM shape functions. A strain smoothing tech-
nique is introduced for the stabilization of nodal integration.
The present formulation is validated by a variety of nume-
rical comparisons. It has been demonstrated that the present
method provides very stable and accurate solution for shells
under different loading conditions, and effectively eliminates
the membrane and shear locking in shells.
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